AX9L Series 3 Phase Intelligent Energy Meter User Manual

(PA

This series meters are widely applied to control system, SCADA system and energy management system, transformer substation automation, distributing net automation, residence community electrical power monitor, industrial automation, intelligent construction, intelligent switchboard, switch cabinet, etc. It is easy to install and maintain, simple connection, programmable setting parameters on meters or computer.

Features:

© Measure Items: 3 phase Voltage/Current/Active Power/Reactive Power/Frequency
/Power Factor etc, totally 28 parameters
\odot Two switch input and two switch output (4 switch input can be ordered)
\odot True effective value measurement
\odot With RS485 interface, Modbus RTU communication protoco
\odot With forward and backward kwh record function. It can record the import and export kwh separatedly

4. Warning

An accident may happen and product may be damaged if operation does not comply with the instruction.

National High-tech Enterprise National Standard Draft Unit KKDS9L-C01ET02-A/0-20220719
AXIL- $\square-\square \square \square-$ Communication: 0: Without this function 8: With 1 loop RS485 communication
Input Signal: 3:3phase power network (3phase 3wwire / 3phase 4wire)
Alarm: C: Two alarm

Alarm output: A: Without alarm output R: Relay alarm output
Measure item: W:voltage,current,power,frequency and power factor measure
A:Current measure V:voltage measure
Display: L:LCD display
Dimension: 9:96H $\times 96 \mathrm{~W} \quad 7: 72 \mathrm{H} \times 72 \mathrm{~W}$
Model: AX series 3phase intelligent power meter

II. Model Example

Model	Alarm(DO)	Alarm(DI)	Communication	Measure items	Input
AX9L-W-RC38	2 DO	2 DI	RS485	Voltage,current, power,frequency, power factor	$\begin{aligned} & 10 \sim 480 \mathrm{~V}(\mathrm{~L}-\mathrm{L}) \\ & 0.02 \sim 6 \mathrm{~A} \end{aligned}$
AX9L-W-A30	No	No	No		
AX9L-A-RC38	2 DO	2 DI	RS485	Current	$0.02 \sim 6 \mathrm{~A}$
AX9L-A-A30	No	No	No		
AX9L-V-RC38	2 DO	2 DI	RS485	Voltage	10~480V (L-L)
AX9L-V-A30	No	No	No		

III. Main Technical Parameters

Connection	3 Phase 3 Wires, 3 Phase 4 Wires
Voltage range	AC 10-480V(L-L)
Voltage overload	Continuous: 1.2 times Instantaneous: 2 times/10S
Voltage consumption	$<1 \mathrm{VA}$ (each phase)
Voltage impedance	$\geq 300 \mathrm{~K} \Omega$
Voltage accuracy	RMS measurement, accuracy class 0.5
Current range	AC 0.025~5A
Current overload	Continuous: 1.2 times Instantaneous: 2 times/2S
Current consumption	$<0.4 \mathrm{VA} \quad$ (each phase)
Current impedance	$<20 \mathrm{~m} \Omega$
Current accuracy	RMS measurement, accuracy class 0.5
Freqency	$45 \sim 60 \mathrm{~Hz}$, accuracy 0.01 Hz

page 1
V. Wire connection

For voltage input terminals, the numbers in parentheses indicate 3 phase 3 wire connection method

Explanation:
A. Voltage input: Input voltage should not be higher than the rated input voltage of meter, otherwise
a PT should be used.
B. Current input: Standard rated input current is 5 A . A CT should be used when the input current is bigger than 5A. If some other meters are connected with the same CT, the connection should be serial for all meters.
C. Please make sure that the input voltage is corresponding to the input current, they should have the same phase sequence and direction, otherwise the error may occur (power and energy).
D.The connection mode of meter which is connected to power network should depend on CT quantity. For 2 pcs of CT, it should be3 phase 3 wire connection. For 3 pcs of CT, it should be 3 phase 4 wire connection. The input network menu setting should accord to the connection mode of the measured
load. Otherwise, the measured voltage or power is incorrect.
E. Please pay attention to the difference between 3 phase 3 wire and 3 phase 4 wire connection.

Wrong connection may lead to incorrect calculation of power factor, power and energy.
Caution.
1.Power supply connection must be correct.
2.Pay attention on the phase sequence of voltage signal input.
3.Current signal input should be connected as per the connection drawing.
4. Connection mode should accord to the setting of user menu "LIN".
5.Energy pulse output is open collector output.
6. Isolation between power supply and circuid board, in case of leakage switch wrong action

Item	Symbol	Name	Function
1	SET	Set Key	\triangle Press this key for 5s to enter menu．\triangle Confirm modified menu value
2	《	Left Key	Δ Shift menu and move data postion in menu operation Δ To shift measure interface outside of the menu
3	》	Right Key	Δ Shift menu and move data postion in menu operation Δ To shift measure interface outside of the menu
4	\approx	Decrease Key	\triangle Enter data modification in menu operation Δ To shift energy page outside of the menu
5	，	Increase Key	Δ Enter data modification in menu operation Δ To shift energy page outside of the menu
6	ESC	Return Key	Δ For backspace in menu operation \triangle Back to previous menu

Measure and display interface illustration：
1．Under Measure Status，Press＂＜／》＂key to switch display 3 phase phase voltage，line voltage， current，active power，reactive power，power factor，total power，frequency，etc．
2．Press＂ $\boldsymbol{\hat { * }} /$＂key to switch display total Kwh ，forward Kwh，backward Kwh，total Kvarh ， forward Kvarh，backward Kvarh．
3．DO1，DO2：In Alarm Mode：used as alarm output status indication．Under switch remote control mode，indicate switch output status
4．S1，S2，S3，S4 as switch remote control input status indicate； 2 switch input as default
5．COM flashing means communicate is acting．
6．P（Kwh）means Total Active Energy（algebraic sum of forward active energy and backward active energy）；$Q($ Kvarh ）means Total Reactive Energy（algebraic sum of forward reactive energy and backward reactive energy）．
Note：Representation method of 26 English letters

English letter	A	B	C	D	E	F	G	H	I	J	K	L	M
Display	R	b	C	d	E	F	U	H	I	J	U	L	\bar{n}
English letter	N	○	P	Q	R	S	T	U	V	W	X	Y	Z
Display	n	O	P	Q	r	S	L	U	$\ddots-1$	U	\bar{U}	Y	$=$

Meaurement Interface Switch Display Proces

（note：in 3 phase 3 wire status only dislay 3 phase line voltage，current，total active power，reactive power，total power factor，frequency ）

VII．Menu Modification Instruction
Under measurement interface status ：
1．Press SET Key more than 5 seconds，if setting password，it will pop up a dialog box input the correct password to enter into user menu，to modify parameter
2．If the present display is 1 st level，press SET Key enter into next level display，press＂«＂ ＂》＂key to change menu subitems．
3．If the present display is 2 nd or 3rd level，press ESC Key，return to previous display．
4．If present display is 3rd level，press＂ $\boldsymbol{*}$＂，＂ $\boldsymbol{\wedge}$＂to flash the digit，press＂ $\boldsymbol{«}$＂，＂ $\boldsymbol{>}$＂to move position，press＂シ＂，＂ $\boldsymbol{\hat { \mathbf { N } }}$＂Key to modify value；press SET Key to save setting value when flashing；if press ESC Key，set value will not be saved and return to the 2nd level display． 5．After modifying the parameters，press SET Key more than 5 seconds or press ESC Key to exit user menu and enter into measuring status．

Menu Structure and Function Description

Note：Menus modification example
eg1．Set CT（current transformer）ratio method

eg2．Set communication address

Reference table : Reference table for alarm output electric parameters

1. DO1, DO2 function can be used for remote control electric equipments. When using this function set the alarm mode as $0(\mathrm{DO})$, otherwise DO1, DO2 used as AL1, AL2 output. DO1, DO2 function control can set set by RS485.
2. After the meter power on and running for 5seconds, alarm function begin to work normally.

Reference table for alarm output electric parameters

No.	Item	Switch output low alarm code		Switch output high alarm code	
1	Ua(A phase voltage)	1	UaL (UabL)	2	UaH (UabH)
2	Ub(B phase voltage)	3	UbL (UcaL)	4	UbH (UcaH)
3	Uc(C phase voltage)	5	UcL (UbcL)	6	UcH (UbcH)
4	$\mathrm{U}(\mathrm{A} / \mathrm{B} / \mathrm{C}$ any phase voltage)	7	UL (ULL)	8	UH (ULH)
5	la (A line current)	9	IaL	10	IaH
6	lb (B line current)	11	IbL	12	IbH
7	Ic(C line current)	13	IcL	14	IcH
8	I(A/ B/ C any line current)	15	IL	16	IH
9	P (total active power)	17	PL	18	PH
10	Pa (A phase active power)	19	PaL	20	PaH
11	Pb (B phase active power)	21	PbL	22	PbH
12	Pc (C phase active power)	23	PcL	24	PcH
13	Q(total reactive power)	25	QL	26	QH
14	Qa(A phase reactive power)	27	QaL	28	QaH
15	Qb (B phase reactive power)	29	QbL	30	QbH
16	Qc(C phase reactive power)	31	QcL	32	Qch
17	S(total apparent power)	33	SL	34	SH
18	Sa (A phase apparent power)	35	SaL	36	SaH
19	Sb (B phase apparent power)	37	SbL	38	SbH
20	Sc(C phase apparent power)	39	ScL	40	ScH
21	PF (Total power factor)	41	PFLL	42	PFLH
22	PFa (A phase power factor)	43	PFaL	44	PFaH
23	PFb (B phase power factor)	45	PFbL	46	PFbH
24	PFc (C phase power factor)	47	PFcL	48	PFcH
25	F frequency	49	FL	50	FH
26	EP (Total active energy)	51	(EPL)	52	(EPH)
27	EQ (Total reactive energy)	53	(EQL)	54	(EQH)
28	Unbalanced difference	55	(UNNB)	56	(ULNB)
29	Unbalanced difference	57	(INNB)	58	(PNNB)

Note: The parameters in parentheses are 3 phase 3 wire corresponding alarm parameters. And each single phase power parameters are not alarmed.
VIII. Modbus communication protocol\&Modbus-RTU protocol introduction

1. The meter adpots Modbus RTU communication protocol,RS485 half duplex communication, adpots 16 digit CRC check,the meter does not return for error check.
1.1 All the RS485 communication should comply with host/slave method. Under this method, information and data transmit between one host and maximum 32 slaves (monitoring equipment);
1.2 Host will initialize and control all information transmitted in RS485 communication loop.
1.3 In any case, communication can never be started from a slave.
1.4 All the RS485 communication is sending by packet. One data packet is a communication frame. One packet include 128 byte at most.
1.5 Host sending is named request, slave sending is named response.
1.6 In any case, slave can only respond to one request of host.
2. Data frame format:

Start bit	Data bit	Parity bit	Stop bit
1	8	Even Parity/odd Parity/no Parity (can be set)	1

3. Data frame format:

frame	byte	Illustration	
Slave address	1	Valid slave address range is 1-247	
Function code	1	0×03	Read one or more register values
		0×06	Write the specified value to an internal register
	0×10	Write specified value to multiple internal registers	
Data address	2	data area storage location when slave executes effective order. Different variable seizes differents numbers of register, some address variable seizes two register, 4 byte data, some variable seizes one register, 2 byte data, please use according to actual situation.	
Data length	2	Data length to be read or written	
Data	variable	The slave returns the response data or the master writing data	
CRC check	2	MODBUS-RTU mode adopts 16 bit CRC check. Sending equipment should do CRC16 calculation for each data of packet, final result is stored in check area. Receiving equipment also make CRC16 calculation for each data of packet (except check area), and compare result area with check area; only the same packet can be accepted.	

4. Abnormal communication processing

If host send a illegal data packet or host request a invalid data register, abnormal data response will happen. This abnormal data response is consisted of slave address, function code, error code and check area. When the high bit position of function code area is 1 , it means the present data frame is abnormal response.
According to MODBUS communication requirement, abnormal response function code=request function code $+0 \times 80$; when abnormal response, put 1 on the highest bit of function code.
For example: if host request function code is 0×04, slave response function code is 0×84.
page 5

Message format sent by the host:

Host sending	bytes	send information	Note	
slave address	1	01	Send to slave with address 01	
function code	1	06	Write single register	
start address	1	0×49	Register address high byte to write	
	1	0×00	Low byte of register address to be written	
Data to be written	1	0×00	Data high byte	
	CRC code			

Message format returned by the slave response correctly:

Host sending	bytes	send information	Note
slave address	1	01	Send to slave with address 01
function code	1	06	Write single register
start address	1	0×49	Register address high byte to write
	1	0×00	Low byte of register address to be written
Data to be written	1	0×00	Data high byte
	1	$0 \times 0 \mathrm{~B}$	Data low byte
CRC code	2	$0 \times D E 51$	CRC code calculated by the host

3. Function code "10": write multiple registers

For example: Host writes fixed data, 1st alarm mode is AD1. Suppose the address code of AD1 is 0×4900, because AD1 is fixed data, seizes 1 data register, decimalist code of 11 is $0 \times 000 B$.

Message format sent by the host:

Host sending	bytes	send information	Note
slave address	1	01	Send to slave with address 01
function code	1	10	Write multiple registers
start address	1	0×49	High byte of register start address of to be written
	1	0×00	low byte of register start address of to be written
Data word length to be written	1	0×00	High byte of word length of written data
	1	0×01	low byte of word length of written data
Data to be written	1	0×02	Data byte length (1 byte total)
	1	0×00	Data high byte
	2	$0 \times 3 F 53$	Data low byte

[^0]decimalist code of 11 is $0 \times 000 \mathrm{~B}$.

Slave response	bytes	return information	Note
slave address	1	01	from slave with address 01
function code	1	03	Read register
read word	1	04	2 registers (4 bytes)
register data	1	0×00	High high bit of address 0×4000 memory content
	1	0×00	High bit of address 0×4000 memory content
	1	0×08	low bit of address 0×4000 memory content
	1	0×98	low low bit of address 0×4000 memory content
CRC code	2	$0 \times F C 59$	CRC code calculated by the slave

Message format returned by the slave response correctly:

Slave response	bytes	send information	Note
slave address	1	01	from slave with address 01
function code	1	10	Write multiple registers
start address	2	0×4900	start address is 0000
Save data word length	2	0×0002	Save 2 words length data
CRC code	2	0×1795	CRC code calculated by the slave

4. The process of generating a CRC: (Can refer to program example as below)
4.1 Preset a 16 bit register as 0 FFFFH(All 1), call it CRC register
4.2 XOR the first 8-bit binary data (the first byte of the communication information frame) with the lower 8 bits of the 16 -bit CRC register and put the result in the CRC register.
4.3 Shift the contents of the CRC register to the right by one bit (towards the lower bit) and fill the highest bit with 0 , and check the shifted-out bit after the right shift;
4.4 If the shift-out bit is 0 , repeat the third step(move to right by one bit again). If the shift-out bit is 1 , CRC register and polynomial A001 (1010 00000000 0001) XOR;
4.5 Repeat steps 3 and 4 until 8 times to the right, so that the entire 8 -bit data has been processed;
4.6 Repeat steps 2 to 5 to process the next byte of the communication information frame;
4.7 After calculating all the bytes of the communication information frame according to the above steps, exchange the high and low bytes of the 16 -bit obtained CRC register .
4.8 The final content of the CRC register is: CRC code.
```
Attached: CRC calculation C language source code
unsigned int GET_CRC(unsigned char * buf,unsigned charnum)
    unsigned int WCRC
    { WCRC
        WCRC (unsigned int)(buf[i]); // Cyclic redundancy check
            if(WCRC&1)
                                WCRC 
                } else
}
// obtain CRC code
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{WCRC for \((j=0 ; j<8: j++)\)} & \(\wedge=\) & (unsign & (buf & \multicolumn{2}{|l|}{// Cyclic redundancy check} \\
\hline & if(WCRC\&1) & & & & \\
\hline & & WCRC WCRC & & >
\(\lambda=\)
\(=\) & \\
\hline & \} WCRC & & >>= & 1; & \\
\hline , \} & & & & & \\
\hline return(WCRC); & & & // & obtai & code \\
\hline
\end{tabular}
```


X. AX9L parameter address reflection table

Three-phase intelligent power meter address definition							
Read-only parameter communication list							
No.	reflection add.	Variable name	register	Data type	read/write	unit	note
1	0x4000	Phase voltage A	2	long	R	0.1 V	
2	0x4002	Phase voltage B	2	long	R	0.1 V	
3	0x4004	Phase voltage C	2	long	R	0.1 V	
4	0x4006	Line voltage AB	2	long	R	0.1 V	
5	0x4008	Line voltage BC	2	long	R	0.1 V	
6	$0 \times 400 \mathrm{a}$	Line voltage CA	2	long	R	0.1V	
7	0x400c	Phase current A	2	long	R	0.001A	
8	$0 \times 400 \mathrm{e}$	Phase current B	2	long	R	0.001A	
9	0x4010	Phase current C	2	long	R	0.001A	
10	0x4012	Active power A	2	long	R	0.1W	
11	0×4014	Active power B	2	long	R	0.1W	
12	0x4016	Active power C	2	long	R	0.1W	
13	0x4018	Total active power	2	long	R	0.1W	
14	0x401a	Reactive power A	2	long	R	0.1var	
15	0x401c	Reactive power B	2	long	R	0.1var	
16	$0 \times 401 \mathrm{e}$	Reactive power C	2	long	R	0.1var	
17	0x4020	Total reactive power	2	long	R	0.1var	
18	0x4022	Apparent power A	2	long	R	0.1VA	
19	0x4024	Apparent power B	2	long	R	0.1VA	
20	0x4026	Apparent power C	2	long	R	0.1VA	
21	0x4028	Total apparent power	2	long	R	0.1VA	
22	0x402a	Power factor A	2	long	R	0.001	
23	0x402c	Power factor B	2	long	R	0.001	
24	0x402e	Power factor C	2	long	R	0.001	
25	0x4030	Total power factor	2	long	R	0.001	
26	0x4032	Frequency	2	long	R	0.01 HZ	
27	0×4034	Total Kwh	2	long	R	0.01 kWh	
28	0x4036	Total Kvarh	2	long	R	0.01kvarh	LED display
29	0×4038	Forward Kwh	2	long	R	0.01 kWh	type power
30	0x403a	Backward Kwh	2	long	R	0.01 kWh	have this
31	0x403c	Forward Kvarh	2	long	R	0.01kvarh	function
32	0x403e	Backward Kvarh	2	long	R	0.01 kvarh	

page 7

Attached 2: Communication baud rate

reflection address	value	Display characters	explanation
0×4805	0	1.2 K	baud rate 1200 bps
	1	2.4 K	baud rate 2400 bps
	2	4.8 K	baud rate 4800 bps
	3	9.6 K	baud rate 9600 bps
	4	19.2 K	baud rate 19200 bps

Attached 3: Alarm unit

reflection address	value	Display characters	explanation
0X4901, 0X4908 0X4A01, 0X4A05	0	1	unit is 1
	1	K	unit is K
	2	M	unit is M

Attached 4: Alarm output status indication

reflection address	Sequence No.	Alarm	explanation
0X480B	BIT2-BIT15	not used	not used
	BIT1	alarm 2	0: no alarm action
			1: alarm action
	BIT0	0: no alarm action	
			1: alarm action

Attached 5 : Switch input status indication

reflection address	Sequence No.	Alarm	explanation
0X480C	ВІТ4-ВП15	not used	not used
	BIT3	switch input 4	0: disconnect
			1: connect
	BIT2	switch input 3	0: disconnect
			1: connect
	BIT1	switch input 2	0: disconnect
			1: connect
	ВІТО	switch input 1	0: disconnect
			1: connect

Attached 6 : Remote control output command explanation

reflection address	Sequence No.	Alarm	explanation
0X480D	BП2-ВाT15	not used	not used
	ВП1	remote control 2	0: disconnect
			1: connect
	ВП0	remote control 1	0: disconnect

[^0]: 2. Function code " 06 ": write single register

 For example: Host writes fixed data, 1st alarm mode is AD1.
 Suppose the address code of AD1 is 0×4900, because AD1 is fixed data, seizes 1 data register,

