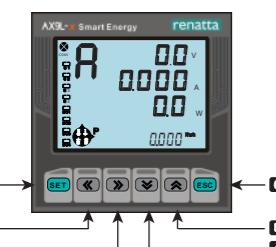


AX9L Series One Phase Intelligent Energy Meter User Manual

This series meters are widely applied to control system, SCADA system and energy management system, transformer substation automation, distributing net automation, residence community electrical power monitor, industrial automation, intelligent construction, intelligent switchboard, switch cabinet, etc. It is easy to install and maintain, simple connection, programmable setting parameters on meters or computer.

Warning

An accident may happen and product may be damaged if the operation does not comply with the instruction.

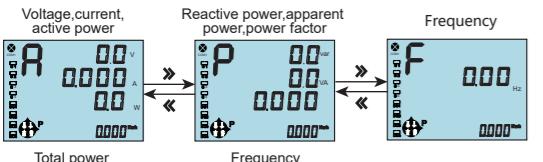

Features:

- Measurement items: single-phase voltage/current/active power/reactive power/apparent power/frequency/power factor, etc., a total of 13 electrical parameters.
- 2 switch inputs and 2 switch outputs (four switch inputs can be ordered)
- True effective value measurement.
- With RS485 digital interface, using Modbus RTU communication protocol.
- With recording function of forward active energy and reverse active energy, which can record the consumed and emitted electric energy respectively.

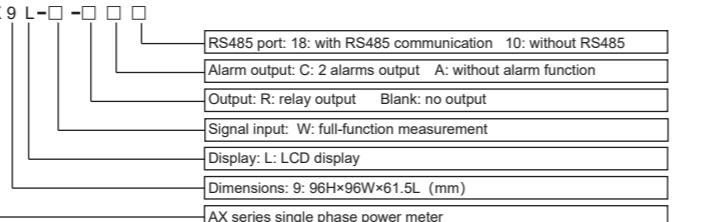
KKDS9L-A02ET01-A/0-20230901

Isolation withstand voltage	Power supply and RS485 interface, DI interface, \geq DC 2000V
Insulation	Input, output, power supply to the housing \geq 5MΩ
Dimensions	96W×96H×61.5L (mm)
Weight	0.5kg

IV. Panel Indication



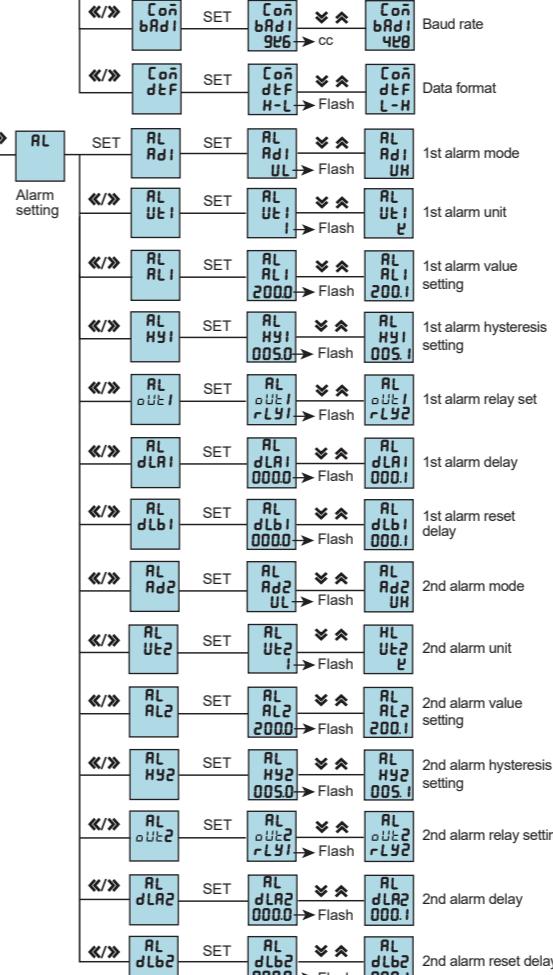
Item	Symbol	Name	Function
1		Set key	Press this key for 5s to enter the menu
2		Left key	Shift menu and move data position
3		Right key	Shift menu and move data position
4		Decrease key	Enter data modification in menu operation
5		Increase key	Enter data modification in menu operation
6		Return key	Back for space in menu operation
			Back to previous menu


Indication of checking the measured value and meter working status :

- In the measurement state, press the button " / " to switch and display single-phase voltage, current, active power, reactive power, power factor, apparent power, frequency and other screens.
- Press the button " / " to increase or decrease the total active energy (algebraic sum), forward active energy, reverse active energy, total reactive energy (algebraic sum), forward reactive energy, reverse reactive energy switching display.
- D01 and D02 are used as alarm output status indicators in the alarm mode, and as switch output status indicators in the switch "remote control" mode.
- S1, S2, S3, and S4 are the status indicators of the switch "remote signal" input, and the default is 2-way switch input.
- When COM flashes, it means that it is communicating.
- P (KWh) represents the total active electric energy (it is the algebraic sum of forward active electric energy and reverse active electric energy); Q (kvarh) represents the total reactive electric energy (it is the algebraic sum of forward reactive electric energy and reverse reactive electric energy).

Illustration for measure interface switch procedure:

I. Model


II. Model Indication

Model	Measure parameters	RS485 port	DI	DO
AX9L-W-A10	Measure parameters	No	2	No
AX9L-W-A18	Measure parameters	with RS485	2	No
AX9L-W-RC10	Measure parameters	No	2	2
AX9L-W-RC18	Measure parameters	with RS485	2	2

III. Main Technical parameters

Connection	1 phase 2 wire
Voltage Range	AC 0 ~ 280V
Voltage overload	Continuous:1.2 times Instantaneous:2 times/10S
Voltage consumption	<1VA
Voltage impedance	\geq 300kΩ
Voltage accuracy	RMS measurement, accuracy class 0.5
Current range	AC 0.025 ~ 5A
Current overload	Continuous:1.2 times Instantaneous:10 times/10S
Current consumption	<0.4VA
Current impedance	<20mΩ
Current accuracy	RMS measurement, accuracy class 0.5
Frequency	45 ~ 60Hz, accuracy 0.01Hz
Power	Active power, reactive power, apparent power, accuracy class 0.5
Energy	Active energy class 1, reactive energy class 2
Display	LCD display (optional blue backlight, default white backlight)
Power supply	AC/DC 100 ~ 240V (85 ~ 265V)
Power consumption	\leq 5VA
Output port	RS-485, MODBUS-RTU protocol
DI input	2 DI (dry contact)
Alarm output	2 DO, 250VAC/3A or 30VDC/5A (optional, please contact the sales before order)
Operating temperature	Temp: -10 ~ 50 °C Hum: <85% RH; no corrosive gas; altitude \leq 2500m
Storage temperature	-40 ~ 70°C

continued

VII. Menu Modification Illustration

- User menu status
- Press the "SET" key for more than 5 seconds. If the user has set a password, a password input box will pop up. Enter the correct password to enter the user menu and modify the corresponding parameters.
- If currently the primary menu is displayed, press "SET" to enter the secondary menu, and press the " " and " " keys to change the menu sub-items.
- If the current menu is level 2 or level 3, press the "ESC" key to return to the previous display.
- After modification, press the confirmation key "SET" for more than 5 seconds or directly press "ESC" to exit the user menu and return to the measurement state.

Menu structure and function description

No	Level 1	Level 2	Level 3	Description
1	SEE System setting	Clear energy	CL-E	Enter 1111 to clear the power, enter 1234 to factory settings
		User password	USER	User password modification, factory default is "0000", no password
		Backlight time	BLT	Backlight off delay time, the unit is "second". The screen does not turn off when the value is "0".
		Page time	PCH	Measure the page turning time, the unit is "second". No page turning when the value is "0".
2	InP Signal setting	Primary, Secondary selection	PECE	Value "SECd" display secondary measured energy, Value "PRI" display primary measured energy
		Software version	VER	Software version number, cannot be modified
		Voltage ratio	Pt1	Primary measured voltage, unit: KV
		Voltage ratio	Pt2	Secondary measured voltage, unit: V
3	Com Communication setting	Current ratio	CT1	Primary measured current, unit: A
		Current ratio	CT2	Secondary measured current, unit: A
		Address	Rd1	Meter address range
		Baud rate	brd1	128/256/488/960/1920 Baud rate 128 means 1200, 256 means 2400, 488 means 4800, 960 means 9600, 1920 means 19200
4	RL Alarm setting	Data order	dtF1	H-L / L-H Data order: high register first or low register first
		Alarm type	Rd1	When the value is DO, it is the remote control mode, otherwise it is the alarm mode. Refer to "Table 1"
		Alarm value unit	UE1	1: means international standard unit, K: means 100 times of the IS unit, M: means 100000 times of the IS unit
		Alarm action value	RL1	The first channel alarm value setting (the unit is the standard display unit)
		Alarm hysteresis	HY1	The first channel alarm hysteresis value setting (the unit is the standard display unit)
		Alarm relay selection	oUt1	1st alarm relay output selection (can only be set when the alarm mode is not DO)
		Action delay	DLR1	Action delay time, unit: S
		Alarm end time	DLB1	Action reset time, unit: S

VII. Output function

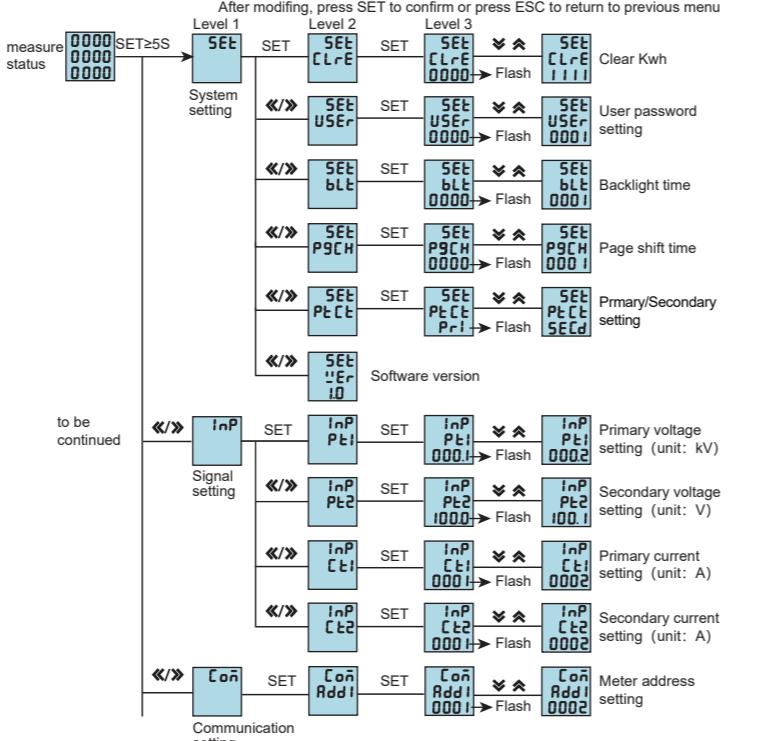
- Remote control function: 4 S1-S4 is used to remote control electric switch status. Two DO1, DO2 function be used to control electric devices; when using this function, alarm mode should be setted as "0", otherwise, DO1, DO2 control function is written via RS485 interface.
- Communication function (please refer to Communication protocol)
- Alarm function, after the meter is powered on and run steady > 5 S, alarm begin to work.(Please refer to table 1)

Table 1: Comparison table of alarm output power parameters

No.	Parameters	Switch output (low alarm) code	Switch output (high alarm) code
1	U(Voltage)	1 (UL)	2 (UH)
2	A(Current)	3 (AL)	4 (BH)
3	P (Active Power)	5 (PL)	6 (PH)
4	Q(Reactive Power)	7 (QL)	8 (QH)
5	S(Aprarent Power)	9 (SL)	10 (SH)
6	PF (Power factor)	11 (PFL)	12 (PFH)
7	F (Frequency)	13 (FL)	14 (FH)
8	EP (Total active energy)	15 (EPL)	16 (EPH)
9	EQ (Total reactive energy)	17 (EqL)	18 (EqH)

VIII. Communication protocol

- The instrument conforms to the MODBUS-RTU communication protocol, adopts RS485 half-duplex communication, and performs 16-bit CRC verification on the data, and the instrument does not return any verification errors.
- All RS485 communication should follow the master-slave mode. In this way, information and data are transferred between a single master station and up to 32 slave stations (monitoring devices);
- The master station will initialize and control all the information transmitted on the RS485 communication;
- In any case, communication cannot be started from a slave station;
- All communication over RS485 happens in a "packetized" way. A data packet is a communication frame, and a packet can contain up to 128 bytes;
- The master station sends a request, and the slave station sends a response;
- In any case, the slave station can only respond to one request from the master station;


2. Data frame format:

Start not	Date not	Check bit	Stop bit
1	8	None, even, odd parity (programmable)	1

5. Communication frame delay

There should be an appropriate delay between the two frame requests of the master station for the slave station to respond to. When the communication baud rate is 9600, in order to ensure that the correct response is received, it is recommended to reserve a 300ms delay between the two frame requests. When the baud rate decreases, the communication delay should increase appropriately.

V. Operation Sequence

Content	Bytes	Illustration
Slave address	1	Valid slave address range is 1-247
Function code	1	0X03 Read one or more current register values
Data address	2	0X06 Write the specified value into an internal register
Data length	2	The location where the data area is stored when the slave executes a valid command. Different variables occupy different numbers of registers, some address variables occupy two registers, 4 bytes of data, some variables occupy one register, 2 bytes of data, please use according to the actual situation.
Data	Changeable	The slave station returns the response data or the data to be written by the master station.
CRC check code	2	MODBUS-RTU mode adopts 16-bit CRC check. The sending device should perform CRC16 calculation on each data in the package, and store the final result in the inspection field. The receiving device should also perform CRC16 calculation on each data in the package (except the check field), and compare the result with the check field. Only identical packages will be accepted.

</

IX. Communication frame format illustration

1. Function code "03": read multiple register input

Example: The host reads UA (phase A voltage), assuming that the measured voltage of phase A is 220.0V. The address code of UA is 0x4000, because UA is a fixed-point number (4 bytes), occupying 2 data registers, and the hexadecimal data corresponding to 220.0V is: 0x0000898 (2200).

The format of the message sent by the host: (high word first as default)

Host sends	Bytes	Message sent	Message sent
Slave address	1	01	Send to slave with address 01
Function code	1	03	Send to slave with address 01
Start address	2	0x4000	Start address
Data length	2	0x0002	Read 2 registers (total 4 bytes)
CRC code	2	0XD1CB	The CRC code is calculated by the host

The message format returned by the slave response:

Slave response	Bytes	Returned messages	Remarks
Slave address	1	01	From slave 01
Function code	1	03	Read register
Words read	1	04	2 registers total 4 bytes
	1	0x00	The high high bytes of the content for memory at address 0x4000
Register data	1	0x00	The high bytes of the content for memory at address 0x4000
	1	0x08	The low byte of the content for memory at address 0x4000
	1	0x98	The low low byte of the content for memory at address 0x4000
CRC code	2	0xFC59	The CRC code is calculated by the slave

2. Function code "06": write single register

Example: The host writes fixed-point numbers to the 1st alarm mode AD1. Assume that the address code of AD1 is 0x4900, because AD1 is a fixed-point number, occupying 1 data register, and the decimal 11 corresponds to 0X000B.

The message format sent by the host:

Host sends	Bytes	Message sent	Example
Slave address	1	01	Send to slave 01
Function code	1	06	Write single register
Start address	1	0x49	Register address high byte to write
	1	0x00	Register address low byte to write
Data to be written	1	0x00	Data high byte
	1	0x0B	Data low byte
CRC code	2	0xDE51	CRC code calculated by the host

Page 08

4. The calculation method of CRC code is:

4.1 Preset a 16-bit register as hexadecimal FFFF (that is, all 1); this register is called CRC register;

4.2 XOR the first 8-bit binary data (the first byte of the communication information frame) with the lower 8 bits of the 16-bit CRC register, and put the result in the CRC register;

4.3 Shift the content of the CRC register to the right by one bit (towards the lower bit), fill the highest bit with 0, and check the shifted out bit after the right shift;

4.4 If the shifted out bit is 0: repeat step 3 (shift right one bit again); if the shifted out bit is 1: XOR the CRC register with the polynomial A001 (1010 0000 0000 0001);

4.5 Repeat steps 3 and 4 until the right shift is 8 times, so that the entire 8-bit data has been processed;

4.6 Repeat steps 2 to 5 to process the next byte of the communication information frame;

4.7 After all the bytes of the communication information frame are calculated according to the above steps, exchange the high and low bytes of the 16-bit CRC register;

4.8 The finally obtained CRC register content is: CRC code.

Attachment: CRC calculation C language source code

unsigned int GET_CRC(unsigned char * buf,unsigned charnum)

```
{
    unsigned charj;
    unsigned int WCRC = 0xffff;
    for(i=0;i<num;i++)
    {
        WCRC ^= (unsigned int)(buf[i]); // Cyclic redundancy check
        if(WCRC&1)
        {
            WCRC = WCRC >>= 1;
        }
        else
        WCRC = WCRC >>= 1;
    }
    return(WCRC); // Obtain CRC check code
}
```

Page 10

The message format returned after the slave responds correctly:

Host sends	Bytes	Send message	Example
Slave address	1	01	Send to slave 01
Function code	1	06	Write single register
Start address	1	0x49	Register address high byte to write
	1	0x00	Register address low byte to write
Data to be written	1	0x00	Data high byte
	1	0x0B	Data low byte
CRC code	2	0xDE51	CRC code calculated by the host

3. Function code "10": write multiple registers

Example: The host writes fixed-point numbers to the 1st alarm mode AD1. Assume that the address code of AD1 is 0x4900, because AD1 is a fixed-point number, occupying 1 data register, and the decimal 11 corresponds to 0X000B.

The message format sent by the host:

Host sends	Bytes	Send message	Example
Slave address	1	01	Send to slave 01
Function code	1	10	Write multiplex register
Start address	1	0x49	Start address high byte for the register to be written
	1	0x00	Start address low byte for the register to be written
Data word length to be written	1	0x00	High byte of the word length for the written data
Byte length of the data to be written	1	0x01	Low byte of the word length for the written data
Data to be written	1	0x02	The byte length of the data (total 1 byte)
	1	0x00	Data high byte
	1	0x0B	Data low byte
CRC code	2	0x3F53	CRC code calculated by the host

The message format returned after the slave responds correctly:

Slave response	Bytes	Send message	Example
Slave address	1	01	From slave 01
Function code	1	10	Write multiplex register
Start address	2	0x4900	The starting address is 0000
Save data word length	2	0x0002	Save 2 word length data
CRC code	2	0X1795	The CRC code is calculated by the slave

Page 09

3. Power meter communication address mapping (the data read by single-phase meter communication is read according to phase A, and the power is read according to total power)

Single-phase/three-phase smart power meter address definition							
Read-only power parameter communication list							
No.	Com address	Parameter	Register	Data bytes	Read/write	Unit	Remark
1	0x4000	Phase voltage A	2	long	R	0.1V	single phase voltage
2	0x4002	Phase voltage B	2	long	R	0.1V	
3	0x4004	Phase voltage C	2	long	R	0.1V	
4	0x4006	Line voltage AB	2	long	R	0.1V	
5	0x4008	Line voltage BC	2	long	R	0.1V	
6	0x400a	Line voltage CA	2	long	R	0.1V	
7	0x400c	Phase current A	2	long	R	0.001A	single phase current
8	0x400e	Phase current B	2	long	R	0.001A	
9	0x4010	Phase current C	2	long	R	0.001A	
10	0x4012	Active power A	2	long	R	0.1W	
11	0x4014	Active power B	2	long	R	0.1W	
12	0x4016	Active power C	2	long	R	0.1W	
13	0x4018	Total active power	2	long	R	0.1W	single phase active power
14	0x401a	Reactive power A	2	long	R	0.1var	
15	0x401c	Reactive power B	2	long	R	0.1var	
16	0x401e	Reactive power C	2	long	R	0.1var	
17	0x4020	Total reactive power	2	long	R	0.1var	single phase reactive power
18	0x4022	Apparent power A	2	long	R	0.1VA	
19	0x4024	Apparent power B	2	long	R	0.1VA	
20	0x4026	Apparent power C	2	long	R	0.1VA	
21	0x4028	Total apparent power	2	long	R	0.1VA	
22	0x402a	Power factor A	2	long	R	0.001	
23	0x402c	Power factor B	2	long	R	0.001	
24	0x402e	Power factor C	2	long	R	0.001	
25	0x4030	Total Power factor	2	long	R	0.001	single phase power factor
26	0x4032	Frequency	2	long	R	0.01HZ	
27	0x4034	Active energy	2	long	R	0.01kWh	single phase active energy
28	0x4036	Reactive energy	2	long	R	0.01kvarh	single phase reactive energy
29	0x4038	Forward active energy	2	long	R	0.01kWh	
30	0x403a	Backward active energy	2	long	R	0.01kWh	
31	0x403c	Forward reactive energy	2	long	R	0.01kvarh	
32	0x403e	Backward reactive energy	2	long	R	0.01kvarh	

Page 11

Extension reserved						
System setting parameter list						
1	0x4800	Wiring	1	short	R	Table 1

<tbl_r cells="7" ix="4" maxcspan="1" maxrspan